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SUMMARY

The slow viscous flow problem of an arbitrary solid particle in motion near a planar wall is recast into a
boundary integral formulation. The present formulation employs the Green function appropriate to the
planar wall problem and is developed in sufficient generality to allow calculations for arbitrary particles in
any base flow which satisfies Stokes equations and no-slip on the wall. The resulting integral equations are
easily discretized and solved for the particle surface tractions. Calculations are performed for axisymmetric
motions of a variety of ellipsQids near the planar wall. Agreement with existing theory is excellent.
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INTRODUCTION

Knowledge of the hydrodynamic resistance of a solid body moving slowly through a viscous
liquid is of importance in understanding a wide variety of low Reynolds number sedimentation
phenomena. The majority of slow viscous flow resistance calculations have focused on situations
where the fluid medium extends to infinity in all directions. In all real situations, however, the
fluid is externally bounded by rigid walls or free surfaces. When these external boundaries are
located at finite distances from the particle, they can have significant effects on the particle
motion. A variety of authors have theoretically considered the effects of walls on the creeping
motion of small solid particles for specific cases where the particle and wall geometries are simple.
In particular, Brenner! used bipolar co-ordinates to obtain ‘exact’ corrections to Stokes drag for
a solid sphere moving perpendicular to a solid wall for the full range of wall-to-sphere distances.
Wakiya? considered slow viscous flow past ellipsoids between two parallel walls. For more
general geometries, asymptotic theory has been developed using the method of reflections when
the particle is, in some sense, far from the wall. For example, Brenner®* and Cox and Brenner®
have considered the problem of an arbitrary particle in the limiting case that the ratio of particle
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dimension to the distance from bounding walls is small. At the other extreme, when the particle-
to-wall distance is small compared to the particle dimension, classical lubrication theory®” has
been applied.

For more general cases, it is most convenient to adopt a numerical method. In particular, for
low Reynolds number flows governed by the creeping motion equations, the most efficient
approach is the boundary integral method pioneered by Youngren and Acrivos® for uniform flow
past a solid particle of arbitrary shape in an unbounded fluid medium. In their technique, the
creeping flow problem was formulated as a system of linear integral equations of the first kind for
the distribution of stokeslets over the particle surface. The unknown densities of the stokeslets
were exactly the desired particle surface stress forces. Subsequent numerical discretization of the
integral system yielded an algebraic system which was easily solved for the particle surface stress
forces.

The formulation of Youngren and Acrivos could also be applied to the case of a solid particle
moving near a planar wall. Because of their choice of the stokeslet as the fundamental singular
solution, however, surface stress forces would need to be determined at the planar wall as well as
the particle surface. In general, this would necessitate truncation of the planar wall to a finite
region, with subsequent distribution of elements on this finite region. The present work considers
an alternative boundary integral formulation of the problem, with the fundamental singular
solution, or more accurately the Green function, selected to eliminate the need for determination
of surface forces on the planar wall. The formulation will be sufficiently general to allow
calculations for arbitrary particles in any base flow that satisfies Stokes equations and the no-slip
condition on the planar wall. For simplicity, however, the method is illustrated for the specific
case of axisymmetric ellipsoidal particles moving perpendicular to the planar wall in an otherwise
quiescent fluid.

FORMULATION

Theory

We consider the slow motion of a solid particle in the vicinity of an infinite, no-slip, planar
boundary. The suspending fluid is assumed to be Newtonian with constant density. The problem
is shown schematically in Figure 1. The analysis presented here is based upon the creeping
motion approximation in which the inertial terms in the equations of motion are neglected
entirely. The governing equations, in dimensionless form, are thus

0=-Vp+ Vi, (1)
0=V-u (2
The boundary conditions are
u—0 as|xj — oo, 3)
u=0 forxeP = {xeR*:x=(x),z)and z = 0}, @)
and on the surface of the particle
u = u,(x,) (specified). (5)

For the case of a solid particle translating in an otherwise quiescent fluid, u, is constant on the
surface. For the case of an imposed base flow at infinity uy, p,, satisfying Stokes equation and the
no-slip condition on the planar wall, the variables u and p in equations (1)—(5) are to be
interpreted as disturbance variables, i.e. the actual flow variables mmus the base flow.
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Figure 1. Schematic of the general problem

In the boundary integral method, equations (1) and (2) and the corresponding boundary
conditions (3){5) are recast into an equivalent integral formulation. The current application of
the technique differs from previous applications (general details of the boundary integral
formulation are given by Ladyzhenskaya®) primarily in the choice of the so-called ‘fundamental
solution’ for the system. The transformation of equations (1)-(5) into integral form is accom-
plished using the Green formula for the Stokes system:

J' ((Vzu—Vp)-w—(V2w+Vq)-u)dV=J n-T-w—n-X-u)dS, xeQ, 6)
0 °0
where
T = (Vu+(Vu)T) - pl, (7)
L =(Vw+(Vw)T) +4L 8)

Equation (6) is valid for any sufficiently smooth fields u, p and w, g such that u and w are
solenoidal. Here Q is an open subset of R* and dQ is its boundary with outer normal n.* This
formula, which relates the Stokes operator to its adjoint operator, is derived by direct application
of the divergence theorem and algebraic manipulation. Solutions to appropriately selected adjoint
operator systems may be superposed using equation (6).

Thus, in the ‘classical’ boundary integral formulation, Youngren and Acrivos,® 1 Lee and
Leal'! and Rallison and Acrivos'? all used the fundamental solution corresponding to a point
force in an unbounded Newtonian fluid, i.e. the solution of

o(x—&)e;=V &€ x)+ViV(E x), 0=V, ¥E x) )]
subject to the simple additional conditions

(& x)= _1_) & x)= (;) IR
VE, x) O(IIX—E..II and ¢ x)=0 e ) lIx — &l —oco. (10)

* In the subsequent analysis it will be assumed that to each point of the boundaries of the domains under consideration
there corresponds a ‘well defined’ normal (for instance the boundary is assumed not to have corners or cusps). This
constraint may be relaxed in certain situations, resulting in a modification of equations (13)(14), (21)+22) and all
subsequent equations which derive from them. For more precise mathematical restrictions on Q and a2 the reader is
referred to References 8 and 9.
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This ‘fundamental solution’ is the so-called stokeslet solution

. 1 {é; rry 1 & 3 nnr
O G R IR e St "

where r = & — x. Physically, 6/ is the ith component of the velocity at & due to a unit force, or
stokeslet, applied at the point x in the direction e;. The quantity — ¢’ is the corresponding
pressure. Superposition is performed using equation (6) by identifying w with $/(€, x), £ with £/and
q with ¢’. The result is the system of integral equations

~(u(x)); = ‘[ n-T(E)- /(€ x)dS, — J‘ n-LiE, x)-u()dS,, xeQ forj=1,23 (12)
Gl on

The first integral in equation (12) is termed the single-layer potential and has density f =n-T.
Similarly, the second integral is called the double-layer potential with density u. Equation (12)
provides an integral representation for the solution of Stokes equation in terms of the values of
the surface stress and velocity on d€Q2. However, strictly speaking equation (12) is only valid for
x €, but in fact the single layer potential is continuous at the boundary while the double layer
potential suffers a jump across the boundary given by

lim {J n'i"(ésx)'u(é)dsg}=%(“(Xs))j+J n-£IE, x,)-u(®)ds,,
o n

xeQ - x,

lim { f n-if(g,x)-u(g)ds¢}=—%(u(xs))j+f n-£i(E, x,)-u(€)dS;, x,€ Q. (13)
0 0N

xe’ - x,

Here Q° = R3/(Qu Q) is the exterior to Q and its boundary 6Q. Thus at the boundary
equation (12) may be written as

~3u(x,); = Lﬂ (0-TE)- /& x,)~n-£1E x,)-uE)dS,;, x,€00. (14)

Note that the problem has not actually been solved but instead recast as a system of integral
equations. The normal tractions f are not known at the boundaries. The value of this boundary
integral reformulation lies in the fact that knowledge of the boundary velocity (via boundary
conditions) then allows direct calculation of the normal tractions via (14). The formulation (14)
was used by Youngren and Acrivos® to calculate the drag forces on solid particles in an
unbounded domain. In that case Q corresponds to the unbounded fluid and 9Q to the surface of
the particle.

However, when this ‘standard’ formulation is applied to the current problem, depicted in
Figure 1, then necessarily dQ = Sp + P. In this case the normal tractions must be calculated both
on the body surface and on the planar wall P. Although the unknown normal tractions can be
determined numerically, the planar wall must necessarily be truncated at a finite distance from the
axis of symmetry, and the remaining portion of the wall discretized.

A more efficient path used in the following sections of this paper is to choose a fundamental
solution, or more correctly a Green function, that includes the no-slip boundary condition at the
wall. Thus instead of (11) we use the solution of the system

o(x—&)e;=V,¢/(€, x)+ VIV, x), 0=V, V(g x), (15)
v/, x)=0, EeP, xeR3 (16)
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as the fundamental solution or Green function to be superposed via (6). The solution to this
system is discussed by Blake!® and stems from the work of Oseen.'* It is

oo L {Q s RRy 2x3A.f_[L3Ri _ %5 RiR ]}

! 8n | r r R R3 '0R;| R? R R3
=— %{% + f;_;l - % - % +2x3Aj[x3<—i% — 3I;i§j> + %%Rj
5 (60ms + Rdy,) + 33#3-]} an
i = 4—3;{"':{;,”‘ - Ri—ﬁfs"i —2x3Aj[— 23 0uR,
+ %(Riaj,, +0,R,) + Ri‘;;;'R" - SREI;":("C’]}, (19)

where r=(& —x;, & —xp &—x3)T, R=(1—x;, &—x;5, &+x3), r=[(E —x,)?
+ (& =% + (& —x3)* 1Y R=[(,—x1)* + (62— x2)" + (&3 + x3)°1"% and Ry = &5+ x,.
The quantity A; has the value +1 for j = 1, 2 and —1 for j = 3. Note that the Green function
(17)-(19) consists of the fundamental solution (11) plus terms due to the presence of the wall. It
corresponds to the velocity, pressure and stress fields for a point force in the fluid in the presence
of a plane wall upon which the no-slip condition has already been applied. Given the geometry of
Figure 1, the analogue of equation (12) for this Green function is

—(u(x)); = f (n-TE) v/ x)—n-Z/E, x)-uE))dS,, xeD forj=1,23. (20)
Sp

In this expression, n is the normal vector pointing inward to D_. Because of condition (16), the
surface integration in (20) is over Sp and not S, + P as would be the case if the fundamental
solution (11) were used. The additional wall terms are well behaved for xe S,. As a result, each
term above involving the kernel v/ is continuous for xe Sp. The terms involving the kernel £/
suffer a jump across Sp, but this discontinuity stems directly from the r terms, i.e. the terms
present in the fundamental solution (11). Thus the jump condition follows from equation (13) and
is

lim “ n-ZIE, x)-u(&)dsg} = Ju(x,)); + f n-E7(E, x,)-u(E)ds,,

Sp

xeD-x, p

lim {J n-TiE, x)-u(é’;)dsg} = — 3(u(x,));, + j n-T/E, x,)-u)dS,, x,eS,. (21)
Sp

xeD, —x, »

Thus in terms of the Green function (17)—(19) the system to be solved is

—3(u,(x,)); = — f G, Xs)‘lls(f;)'ndsg-*"( VIE x)-1E)dSp.  x,€Sp. 22)
Sp Se

This is the primary result of this section. Equation (22) provides a relationship between the
unknown tractions f on the particle surface and the particle velocity for arbitrary particle-wall
geometries and base flows.
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Formulation for particle translation in an otherwise quiescent fluid

For the case in which the particle translates in an otherwise quiescent fluid, the resuit (22) can
be simplified further. In this case u(x,) = u, is a constant for x, € Sp. Modifying the arguments of
Ladyzhenskaya,® it can be shown that for a constant vector C,

0, xeD,
-[ n-X/(,x)-CdS, = { —3C;, Xx€S,,
S -C;, xeD..
Using this fact, we obtain a linear integral equation of the first kind for f:
- (us )j = f vj(ga xs) ‘ f(é) dS{’ xs € SP' (23)
S
For the case of axisymmetric motion, i.e. u, = —e, with the particle oriented such that it

possesses axisymmetry about the z-axis, these equations simplify further, Here the particle is a
body of revolution with z-axis being the axis of revolution. For convenience, a cylindrical co-
ordinate system is employed with p = /(x? + y?). There are several ways in which the particle
surface may be represented. The simplest (used by Youngren and Acrivos®) is to define the
particle surface as (p(2), z) for 8€ [0, 2n), the functional dependence of p on z being given. This
representation implicitly limits the types of surfaces which can be considered to those for which p
is a single-valued function of z. An equally simple but more general representation, which avoids
this potential problem, is to parametrically define the surface as (p(s), z(s)) for 6 € [0, 27), where s
is a parametric independent variable. This was the approach taken here.

The dependence of the integrands on 8 in this system is known explicitly, and integration with
respect to this variable may be performed. Although the resulting integration yields quite
complex expressions, the net result is the reduction of the integration domain from two
dimensions to one. The resulting equation for the unknown surface stress components f, and f, is

(_?) -- f " Q&) - (?)p(s)(;ﬂs) +2%(9)'2ds, X85, 24)

where p(s) and Z(s) are the derivatives of p and z with respect to s, and
—8nQ,, = C' — CP* + pp,(C32 — C§2) +(p* + p2)(C* - CF)
+0pa(C3° = €9°) = 2202[C3} - 3{(p* + p2)CY! + ppo(CE? + C2°)}1,
870, = p(r3C3' — RyC3Y) + po(rsC3° — Ry CY)
+22,[pCS" + p,C3° +32R3(pC" + p,C3%)],

8105, = po(r3C3' — R3C3Y) + p(r3CS° — R4CS0)
+22,[p,C3" + pC° — 32R4(p,C3* + pC2)],
—81Q,, = C% — C9 4+ r2C9° — R2CY° + 22,2(C2° — 3R2C0).

Here the integration variable & has been written as (p, z) and (p,, z,) corresponds to x,, the
fixed point in the integration. Also, ry=z—2z, and R;=z+2z, The expressions C," and
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C;"' are defined as

cm = 2 |7 sin"2xcos™2x d 55
p _yp/Z 0 [l—kzsinzx]"/z X 25)

and
~ 2 {™ sin"2xcos™2x
C'"” = -
P yR? Jo [1—kEsin?x]72 dx, (26)
where
y=(p+p) +13} k* =4pp, [y
and

YR =(p+p.)*+R3, ki =4pp,/7x.

Expressions (25)-(26) for C;™ and é;"' have been analytically evaluated, and the results of the
integrations are given in the Appendix.

Implementation

System (24) may be discretized and solved numerically. The approach taken here is that used by
Youngren and Acrivos,? ie. the method of Krylov-Bogoliubov.!® Specifically, the particle arc,
which is given by (p(s), z(s)), for s€[s,, s¢ 1, is divided into N elements. This is accomplished by
dividing the interval [s,, s;] into subintervals As; with centres 5;,(j =1, . . ., N). Each parametric
value s; corresponds to a point on the arc x; = (p(s;), z(s;)), and each As; corresponds to a
segment or element of the arc. The elements are assumed to be sufficiently small that the local
normal tractions f, and f, may be assumed constant within each element. The resulting discretized
system 1s

(_?) &~ — .i {[Ls Q(E(s), x;) p(s) (P%(s) + Z3(s))'/? ds].(j"((:{'»}, 1<i<N (27

This is a linear system of 2N equations in the 2N unknowns f,(x;), f,(x;), where 1 < j < N. Each
coefficient

[L QGE(s), x) p(s) (9*(s) + 22(5))'/2 dS] (28)

for j # i was evaluated by Gaussian quadrature. When j =i and s = s; then &(s) = x;, and the
function Q becomes unbounded. In this case the region As; is subdivided into three smaller
regions, one of which is centred at the singular point s; and is Aj"® = [s; —¢/2, s;+¢/2]. The
constant ¢ is assumed small enough that over A}"8 the arc may be accurately approximated by the
tangent line through the point x;. Following Lee and Leal,!! the singular contribution to
equation (27) from over the interval A¥"® can be approximated analytically. The details of the
singular contribution are given in the Appendix. In the remaining two portions of the singular
element As;, accurate Rhomberg integration was performed. The linear system was solved using a
standard matrix inverter.

NUMERICAL RESULTS

Axisymmetric flow calculations were performed on the class of ellipsoidal particles given by
(Figure 2(a))

p*la® + 22 /b* =1,
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Figure 2. (a) Ellipsoid geometrical parameters. (b) The parametrization variable s

or equivalently, written in parametric form,

z= zm+b|:sin(ns— g) + 1:|, p= acos(ns— g), se[0,1].

The parameters a, b and z,,, have been made dimensionless with respect to the length [, which is
the radius of a sphere of equivalent volume. This non-dimensionalization provides a relationship
between a and b. In fact, if « = b/a then b=0a%> and a = a™'/. Thus « and z,,,, the minimum
particle-to-wall distance, are the only geometric variables in the system. The case of a sphere is
recovered by setting « = 1. The parametric variable s was chosen for simplicity, and in fact zs
corresponds to the angle shown in Figure 2(b). A non-optimal strategy of constant element width
As was employed. In all cases the particle drag was normalized with respect to the theoretical

values for an unbounded fluid.'® The normalized drag force is denoted by A.
Sphere near a plane wall

For the special case of a sphere, ‘exact’ values of 4 are given by!

® nn+1) { 2sinh[(2n + 1)w] + (2n + 1)sinh(2w) 1
4 2n— 1)(2n + 3) |4sinh[(n + H)w] — 2n + 1sinh(w) |’

1= ;lsinh (@) (29)

where
w = 11’1 [zgap + 1 + \/(Zéap + zzgap)]'

Table I lists the results from expression (29) as well as numerical results obtained here with 10, 20,
30 and 40 elements on the surface of the sphere. Even for 10 elements, the numerical and
theoretical results are in excellent agreement. For all values of z,,, in the range 100 to 0-25 the
error is less than 0-5% for 10 elements, less than 0-09% for 20 elements, 0-05% for 30 elements and
less than 0-03% for 40 elements. For smaller values of z,,, the accuracy deteriorates for all
numbers of elements because the magnitudes of the local stresses and stress gradients increase
dramaticaily on the wall side of the sphere as z,,, decreases. Large stress gradients lead to a
breakdown of the constant-within-each-element assumption and so degrade numerical accuracy.

The evolution of the local surface stresses as the sphere approaches the wall is plotted in
Figures 3(a) and 3(b) for the 40-element case. An increase in the number of elements in the
small-z,,, case improves the overall accuracy. This is demonstrated by the fact that with 40
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elements and z,,, = 0-1 the error in the normalized drag is 0-265%, as compared with 2:93% for
10 elements. In the closest case of z,,, = 005 with 40 elements the error in drag is only 1-13%.

For the sake of comparison, sphere calculations were also performed using the classical
boundary integral technique with the stokeslet fundamental solution. This entailed integration
over the planar wall. The planar wall was discretized by truncating at a radial distance denoted by
p, and placing N ,,, elements in the interval from p = 0 to p,. Ny, elements of constant As width
were used on the sphere surface. On the wall, elements of constant as well as non-constant width
Ap were employed. The non-constant width elements were selected so that the Ap was small near
p =0 and increasing in size to p = p,.* The results are given in Tables II-V where the numerical
values for various combinations of Ny, Nephere and p, are compared with the exact solutions of
Brenner. Although the accuracy obtained is quite good when the sphere is far from the wall for
the majority of the cases considered, accuracy degrades rapidly as the sphere approaches the wall.
As expected, when the sphere is near the wall the accuracy is best when the wall elements near
p =0 are smallest, since smaller elements are capable of resolving the large variation in wall
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Figure 3. (a) Evolution of the z-component of the local surface tractions as z,,, decreases: ——, z,, =100, --**, 2,,,=10;
el Zglp= la 7 Zglp=0.05

* There are an infinite number of choices for such a non-constant distribution of elements. The current choice was made
arbitrarily and for simplicity. ¥ ;= p,[(j — 1/2)/N.u]> then the jth element is the interval [(;_, + P2, By +5;)/2]
forj=2,3,..., N, — L Thefirst interval is [0, (5, + §,)/2] and the last interval is [(fy,..,,- 1 + On w-2)/2,p32,=0
f;)]r all ilrlnervals. This distribution corresponds approximately to a linear increase in the Ap width mo'{'.ing outward along
the wall.



HYDRODYNAMIC PARTICLE-WALL INTERACTION 661

b 1.0

el

-

LD AR I B B L L AL BLNLER AN N R ARNRIN SIS 3 SR RLELE BLELLLS

= TRER U N DN UN S U W AN 0 N SN S YO0 U N S 6 N S W 0 O O I I

-4.5 A L 1 )| L 1 L | A 1 1 j L 1 L L A ] X

o
—
N
w
G
0
o
-~
@
[Se}
&
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both (a) and (b) the arbitrary constant due to pressure has been chosen so that f,=0 at s=0-5

s Zoap

surface traction. Thus for both constant and non-constant width elements the best accuracy near
the wall for a given N, occurs when p, is smallest.

The stokelet and Green function methods are best compared on the basis of the total number of
elements, N, Where Ny, = Nyan + Nopnere fOr the stokeslet case and N, is taken to be the
number of elements, N, on the particle surface for the Green function method. Overall, for the
same N, the Green function results are far superior in accuracy to the stokeslet results. In
particular, the Green function results for N = N, = 30, with few exceptions, are more accurate
than any of the stokeslet results for N, = 60 (Nyay = 30, Nyypere = 30). It is anticipated that the
accuracy of the stokeslet method may be improved by distributing more smaller-width elements
near p =0 on the wall. Nevertheless, such redistributions are ad hoc and of unlimited variety.
Further, such redistribution of points on the sphere surface for both the Green function and
stokeslet methods could also undoubtedly lead to increased accuracy. Employing the Green
function entirely eliminates the need for ad hoc choices of wall element distributions and wall
truncation distances. For the solid sphere problem Brenner’s exact solution is known, and the
dependence of the accuracy of the stokeslet method on the parameters N.,;,, p, and the
distribution of elements can be determined. In any realistic problem the choice of these
parameters may be difficult or unmotivated.
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Table II. A comparison of numerical results generated using the stokeslet

fundamental solution and N ;... = 6, N, = 6 with the theoretical results

of Brenner (equation (29)) for the case of a sphere: (a) constant width wall
elements; (b) non-constant width wall elements

(a)
y) A A
Zeap (analytic) (p, =25 Error (p,=50) Error
100 1011263 1015590 0428 1-018810 0-746
75 1015024 1-018660 0-358 1023150 0-801
50 1-022553 1-026260 0-363 1032010 0-925
25 1-045196 1-052580 0-706 1056430 1-07
10 1.113503 1-125140 1-05 1-125940 112
9 1-126194 1-138050 1-05 1-138890 113
8 1-142068 1:154130 1-06 1:154960 1-13
7 1-162491 1-174800 1-06 1-175150 1-09
6 1-189737 1-202420 1-07 1-200600 1913
5 1227889 1-241260 1-:09 1232290 0-358
4 1-285087 1-299680 1-14 1269840 —1-19
3 1-380204 1-394650 1-05 1308740 —518
2 1-569205 1-556630 —0-801 1336160 —14.9
1 2:125536 1790740 —158 1-331850  —37.3
0-75 2:489273 1-841520 —260 1-324160  —468
05 3205390 1-875680 —41'5 1-314010 —590
025 5305324 1-885720 —64-5 1-301850 —755
01 1145916 1-878580 —83-6 1294010  —88-7
005 21-58582 1-874220 —-91-3 1291440 —940
(b)
A yA A
Zgap (analytic) (p,=25) Error (p,=50) Error
100 1-011263 1-015480 0417 1-018690 0734
75 1-015024 1-018490 0-341 1-023010 0787
50 1-022553 1-026000 0337 1-031910 0915
25 1-045196 1-052360 0-685 1-056490 1-08
10 1-113503 1-125430 1-071 1:126320 115
9 1-126194 1-138440 1-087 1-139300 116

1-142068 1:154660 1-103 1-155600 1-18
7 1-162491 1-175500 1-119 1-176710 1-22
6 1-189737 1-203290 1-139 1-205120 1.29
5 1-227889 1-242210 1-166 1245240 1.41
4 1-285087 1-:300720 1-216 1-305390 1-58
3 1-380204 1-399000 1-362 1-403730 1-70
2 1-569205 1-598540 1-869 1-596800 1-76

1 2-125536 2-185370 2:82 2:292810 7-87
0-75 2:489273 2:566520 310 2937180 180
05 3-205390 3-403570 618 4742860 480
025 5-305324 7-652900 442 13-30720 151

0.1 11-45916 30-20205 164 1152971 906
0-05 21-5858 3574634 610 — —
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Table II. A comparison of numerical results generated using the stokeslet

fundamental solution and Np.e = 10, N,y = 10 with the theoretical results

of Brenner (equation (29)) for the case of a sphere: (a) constant width wall
elements; (b) non-constant width wall elements

(@)
A A A
Zgap (analytic) (p,=25) Error (p,=50) Error
100 1011263 1-008330 —0290 1-011540 0-027
75 1-015024 1-011400 —-0357 1-015860 0-082
50 1-022553 1-018990 —0348 1:024650 0-205
25 1-045196 1-045130 —0-006 1-048880 0-352
10 1-113503 1-117210 0-333 1-117560 0-364
9 1126194 1-130050 0-342 1-130260 0-361
8 1-142068 1-146030 0-347 1-146180 0-360
7 1-162491 1-166540 0-348 1-166740 0-366
6 1-189737 1-193830 0-344 1-194300 0-386
5 1-227889 1-231980 0-333 1-233000 0-416
4 1-285087 1-289180 0-319 1-290090 0-389
3 1-380204 1-384720 0-327 1-377360 —0206
2 1-569205 1-576370 0-457 1-505340 —4-07
1 2-125536 2:083520 —198 1-637900  —229
0-75 2-489273 2-320980 —676 1-654970 —33-5
0-5 3-205390 2612240 —185 1-658980  —48-2
0-25 5-305324 2937680 —446 1-647910  —689
01 11-45916 3139810 —72:6 1634120 —857
0-05 21-58582 3208300 —851 1628570  —92-5
(b)
A A A
Zgap (analytic) (p,=25) Error (p,=50) Error
100 1-011263 1-008260 —-0297 1-011460 0-019
75 1015024 1-011300 —0-367 1-015770 0-073
50 1-022553 1-018820 —0365 1-024570 0-197
25 1-045196 1-044970 -0022 1-048880 0352
10 1-113503 1117260 0-337 1-117840 0-389

9 1-126194 1-130130 0-350 1-130600 0-391
8 1-142068 1-146180 0-360 1-146570 0-394
7 1-162491 1:166760 0-367 1167120 0-398
6 1-189737 1194180 0-373 1-194560 0-405
5 1-227889 1-232540 0-379 1-233040 0-420
4 1-285087 1-290050 0-386 1-290850 0-448
3 1-380204 1-385750 0-402 1-387280 0-513
2 1-569205 1-576420 0-460 1-580980 0-750
1 2-125536 2:142720 0-808  2:172760 2:22

075 2-489273 2:520320 1-25 2:563390 2:98
05 3-205390 3294110 2:77 3-327460 381
025 5-305324 5750570 839 6-182470 16-5
01 11-45916 13-27579 159 25-47089 122

0-05 21-58582 2102722 —-2:59 2762877 280
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Table IV. A comparison of numerical results generated using the stokeslet fundamental solution and
Nophere = 20, Ny = 20 with the theoretical results of Brenner (equation (29)) for the case of a sphere:
(a) constant width wall elements; (b) non-constant width wall elements

(a)
Y] A A i
Zgap (analytic) (p.=25) Error (p,=50) Error (p, = 100) Error
100 1011263 1-005340 —0-586 1008550 —0-268 1-011310 0-005
75 1-015024 1-008420 —0-651 1-012870 ~-0212 1-015470 0-044
50 1-022553 1-016020 —0639 1-021630 —0090 1023340 0-077
25 1-045196 1-042100 —-0296 1-045780 0056 1-046120 0-088
10 1-113503 1-113980 0-043 1-114390 0080 1114270 0-069
9 1-126194 1-126790 0-053 1127060 0-077 1126930 0-065
8 1-142068 1-142760 0-061 1-142900 0073 1-142810 0-065
7 1-162491 1163260 0066  1-163270 0067 1-163320 0071
6 1-189737 1-190540 0-067 1-190430 0-058 1-190820 0-091
5 1-227889 1-228680 0-064 1-228440 0-045 1-229440 0-126
4 1-285087 1-285790 0-055 1-285470 0-030 1-286430 0-105
3 1-380204 1-380630 0-031 1-380790 0042 1-373560 —0-481
2 1-569205 1-568760 —0028 1:572100 0-184 1-501380 —~4-32
1 2-125536 2-126090 0026 2078760 —220 1633810  —23'1
075 2-489273 2-496450 0288 2316190 —695 1650860  —337
05 3-205390 3212790 0-231 2:607630 —186 1-654870  —484
0-25 5305324 4-881460 —799 2933810 —447 1-643760  —69-0
01 11-45916 7-284840 —364 3-136340 726 1-629750  —858
0-05 21-58582 8783280 —593 3204850 —852 1-623890  -92'5
(b)
A A A A
Zgap (analytic) (p,=25) Error (p,=50) Error (p, = 100) Error
100 1-011263 1-005310 —0-589 1-008510 —0-272 1-011290 0-026
75 1-015024 1008370 —0-656 1012820 —-0217 1.015460 0-043
50 1-022553 1015940 —0-647 1-:021590 —0094 1023330 0-076
25 1-045196 1042010 —0-305 1-045780 0056 1-046140 0-090
10 1-113503 1.113970 0-042 1-114490 0-089 1-114490 0-089
9 1-126194 1-126800 0-054 1127190 0-088 1-127190 0-088
8 1-142068 1-142780 0-062 1-143080 0-089 1-143080 0-089
7 1-162491 1-163300 0-070 1-163520 0-089 1163530 0-089
6 1-189737 1-190620 0-074 1-190790 0-089 1190810 0-090
5 1-227889 1228820 0076 1-228980 0-089 1-:229030 0093
4 1-285087 1-286060 0-076 1-286240 0-090 1-286370 0-100
3 1-380204 1-381200 0072 1-381500 0-094 1-381850 0119
2 1-569205 1-570230 0065 1-570960 0112 1-572140 0187
1 2-125536 2-126880 0-063 2-130670 0242 2-137710 0573
075 2-489273 2-491240 0079 2-498970 0-390 2-515210 1-04
05 3-205390 3-210330 0154 3231620 0-818 3290070 2-64
0-25 5305324 5-344480 0-738 5-463540 2:98 5-757460 852
01 11-45916 12-07906 541 13-84710 208 15-27464 333

0-05 21-58582 2472773 14-6 30-57144 41-6 36-88208 709
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Table V. A comparison of numerical results generated using the stokeslet fundamental solution and
Nphere = 30, Ny = 30 with the theoretical results of Brenner (equation (29)) for the case of a sphere:
(a) constant width wall elements; (b) non-constant width wall elements

(a)
A A A A

Zgap {analytic) {p,=125) Error (p=50) Error {p, = 100) Error
100 1-011263 1:004810 —0638 1-008020 —0321 1-010770 —0-049
75 1-015024 1-007900 —0702 1-:012330 —0-265 1-014930 —0009
50 1-022553 1-015500 —0690 1-021090 —0143 1-022790 0-023
25 1-045196 1-041570 —0347 1-045230 0-003 1-045570 0-036
10 1-113503 1-113410 —0-008 1-113840 0030 1113760 0-023
9 1126194 1-126220 0002 1-126520 0029 1-126410 0-019

8 1-142068 1:142190 0-011 1-142380 0-027 1-142230 0-014
7 1-162491 1-162690 0-017 1162770 0-024 1-162580 0-008
6 1-189737 1-189970 0-020 1:189960 0-019 1-189740 0-0003
5 1-227889 1-228130 0-020 1-228010 0010  1-227860 —0-002
4 1-285087 1-285290 0-016 1-285000 —0-007 1-285370 0-022
3 1-380204 1-380240 0-003 1-379710 -0036 1-381670 0-106
2 1-569205 1-568640 —0036 1-568270 —0060  1-566050 —0-201

1 2:125536 2:121690 —0181 2131500 0-281 1-935660 —893
075 2-489273 2:483940 —0214 2487960 —-0-053 2054850 —175
0.5 3205390 3207130 0-054  3-089850 -3-60 2:166220 —324

0-25 5305324 5347030 0786 4141040 —219 2:250720 —576
01 11-45916 10-288800 —102 5206130 —54-6 2-280410 —801

005 21-58582 14.86634 =311 5719160 —73'5 2:285870 —894
(b)
A p) A A

Zgap (analytic) (p,=25) Error (p,=50) Error (p, = 100) Error
100 1-011263 1004790  —0.640 1007990 —0-324 1010750 —0-051
75 1015024 1007860  —0-706 1012300 —0-268 1014920 —0-010
50 1-022553 1015440 —0-696 1021060 —0-146 1-022780 0-022
25 1-045196 1-041510 —0-353 1-045220 0-002 1-045580 0-037
10 1-113503 1113400 —0-009 1-113880 0-034 1-113890 0-035
9 1-126194 1-126220 0-002 1-126570 0-033 1-126580 0-034

8 1-142068 1-142200 0-012 1-142450 0-033 1-142460 0-034
7 1162491 1-162700 0018 1-162870 0-033 1-162880 0-033
6 1-189737 1-190010 0-023 1-190110 0-031 1-190120 0-032
5 1-227889 1-228200 0-025 1-228260 0-030 1-228270 0-031
4 1-285087 1-285420 0-026 1-285440 0-027 1-285480 0-031
3 1-380204 1-380520 0-023 1-380540 0024 1-380640 0-032
2 1-569205 1-569440 0-015 1-569500 0-019 1-569850 0-041

1 2:125536 2-125380  —0-007 2:125960 0-020 2-128290 0-130
075 2:489273 2-488790 —-0-019 2:490180 0-036 2495210 0-238
05 3-205390 3204310 —0-034 3-208820 0-107 3-223820 0-575

025 5-305324 5-305440 0-002 5339160 0-638 5437470 249
01 11-45916 11-56424 0-917 12-03615 504 13-49018 177
0.05 21-58582 22:63316 4-85 25.79175 19:5 32-16383 490
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Figure 4 compares the computational time for the Green function and the stokeslet method as
a function of N,,,;. When N, is small the Green function method is approximately 13 times
slower than the stokeslet method. The longer computational time of the Green function method
for the same N, is a direct consequence of the increased complexity of computing the Green
function kernels compared with the stokeslet kernels. For larger N, the time required to invert
either the stokeslet or Green function linear systems for the same N, (Which is approximately
the same since both systems are 2N, X 2N o1 i0 Size) becomes more important and the ratio of
computational times tends toward unity. Note, however, that for comparable accuracy the Green
function method requires less than half the total number of elements that the stokeslet method
requires. Thus for a given level of accuracy the Green function method is actually substantially
faster than the stokeslet method. All computations were performed on a Sun 3/160 workstation
with a floating point accelerator. Absolute computational times were of the order of minutes (for
instance, stokesiet method calculations with N, = 60 took approximately 240 CPU seconds,
N = 40 took 100 CPU seconds, N, =20 took 25 CPU seconds and N, = 12 took
10 CPU seconds).

Trat

Ntotal

Figure 4. Comparison of computational time between the wall Green function technique and the stokeslet fundamental
solution technique. T, representing the ratio of computational times (Green method)/(stokeslet method), is plotted
against N, ..,
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Ellipsoids near a plane wall

Calculations were carried out for ellipsoids with axis ratios « of 0:0625, 0-125, 0-25, 0-5, 2, 4, 8
and 16. The parameter z,,, ranged from 0-05 to 100. Computations were terminated for small Zgap
when calculated local stresses grew large and differed significantly in neighbouring elements (this
generally occurred when the computed value of 4 was of the order of several hundred).

Brenner® developed an asymptotic theory for the case when an arbitrarily shaped particle is in
motion far from the wall. More specifically, if R,, is the equivalent radius of the particle (defined
such that 6zuUR,, is the force exerted on the particle when fallmg with velocity U in the absence
of the wall), then Brenner’s asymptotic theory is valid for z, o Zeenwe/Req > 1, where z_,,. is the
dimensional z-axis distance to the centre of the particle. This asymptotic theory predicts an
expression of the form

1
A= .
1—9/82, +0(z.3) (30)
Note that z —(zs_p+a2’3)(I/R,q), and for ellipsoidal particles R, is derived from the general
expressions!®

Ro . 8
I 3(a*Pke+B,)
where
Boa2/3_
0T Ter o1
al’? a+./(@*=1) 5
ﬁo_\/(az—l)ln<&—\/(a2-l) foro®—1>0,

Bo = \/(2117:/12)[% —tan“(ﬁ)] fora®—1<0.

Numerical results for the ellipsoid and sphere cases are compared with the large-z, theory in
Figures 5(a)-13(a). The most remarkable observation from these comparisons with the large-z,
theory is that the numerical results agree quantitatively with the large-z, theory for values of z_ as
small as 5, while qualitative agreement extends to even lower values of z., including the sharp
upturn in 2 for z, = 9/8. However, it is clear that the far-field results cannot literally capture the
singularity in 4 and other detailed behaviour for very small z,,, (or z.). For this purpose a more
appropriate asymptotic analysis is via lubrication theory for flow in a thin film.

Using classical lubncatlon assumptions, Cox® developed an asymptotic theory which is valid
for the case in which z,,, bzgap/a = z,,,0*? < 1. This theory predicts

1
—5- ——— +0( . 31
14/3 (qu/l)z]ub + ( n(zlub)) ( )
Explicit in Cox’s lubrication theory is the assumption that as z,,, — 0 the approaching surfaces
come together in single-point contact. Thus Cox’s theory is not valid for the case of a disc
approaching a planar wall with the face of the disc parallel to the wall. In fact, the case of a disc of
radius R approaching a planar wall in this manner was analysed by Reynolds’ who predicted

R4
4R_ 23’

€q lap

A= (32)
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where 2,,, is the dimensional gap distance. Notice that as Z,,, — 0 equation (31) predicts A
increasing effectively as 1/2,,, while equation (32) predicts 1/23,,. Necessarily, when single-point
contact will occur (as in all ellipsoid cases considered in this paper) then equation (31) predicts the
correct limiting behaviour for sufficiently small 2,,,. Nevertheless, ellipsoids with sufficiently
small values of o resemble discs with radii R = bl, and we may thus expect Reynolds’ result,
equation (32), to provide a reasonable approximation for some intermediate 2,,, distances and

sufficiently small values of . For these ellipsoid cases equation (32) may be written as

o83

A= ——.
4 (Req/Dzine

Numerical results for small z,, values are plotted in Figures 5(b)-13(b) together with the
asymptotic formula (31) and, where relevant, (33). For the case « = 1 we also show Brenner’s
analytic theory for a sphere (equation (29)).

The results for « = 1, 2 and 4 clearly approach the lubrication asymptote. On the other hand,
for « = 8 and 16 we were not able to capture the approach to asymptotic behaviour because
computations were terminated for z,, = 0-05, and in these cases this corresponds to z,,, values
well outside the range of validity of Cox’s lubrication theory.

The numerical results for @ < 1 demonstrate the transition between Reynolds’ result for the
disc, (33), and the lubrication theory, (31), at ‘intermediate’ values of z,,, for small a. In particular,

(33)

(a)

T S S G S T W | i 1 U S S S W |

109 16! 102

zZ,

Figure 5. (a) Large-z, results: O, numerical results for a =16 with 40 elements; ——, asymptotic predictions as given by
equation (30)
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Figure 5. (b) Small-z,,, results: [, numerical results for a = 16 with 40 elements; ——, Cox’s lubrication theory as given by

equation (31)

as o decreases from 0-5 to 0-0625 we see that the numerical results agree closely with (33) over a
significant range of z,, before (presumably) reverting to the lubrication asymptote for even
smalier values of z,,,.

It should be noted, in all of the comparisons between our results and Cox’s lubrication theory,
that the latter is based on the implicit assumption that there exist extremely localized regions of
high stresses and stress gradients near the point of smallest gap. Because of resolution difficulties,
the current numerics break down when localized high stresses and stress gradients occur. Despite
this fact, the numerics are able to provide information indicating trends, asymptotes and
approximate regions of validity of Cox’s lubrication theory. In particular, the numerics clearly
indicate that Reynolds’ lubrication theory is a better approximation than Cox’s theory for small-a
cases (0-125 and 0-0625 in particular) and intermediate z,,,, values.

CONCLUSIONS

The wall Green function formulation of the boundary integral method for low-Reynolds-
number flow was carefully tested against the analytic results of Brenner for the translation of a
solid sphere toward a plane wall, and was found to yield highly accurate results up to
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dimensionless gaps of 0-0S. When compared to the boundary integral formulation using the
stokeslet fundamental solution, the Green function formulation was found to be more accurate
for the same total number of elements. In fact, the Green function method required approximately
half the number of elements that the stokeslet method required to maintain the same level of
accuracy. Although, the Green function formulation was slower computationally for the same
N> the requirement of less elements to maintain the same level of accuracy easily compensates
timewise for this disadvantage. The solid ellipsoid results compared extremely well with the far-
field asymptotic results of Brenner for distances as small as z_ = 5. The current numerics as well as
Brenner’s analytic theory for a sphere (equation (29)) indicate an upper bound of z,,, = 0-05 for
the range of predictive validity of Cox’s lubrication theory for the particle geometries considered
here. Although as z,, = 0 Cox’s lubrication theory necessarily predicts the correct limiting
behaviour of 4, for the near-disc-like ellipsoids having a values of 0-25, 0-125 and 0-0625, the
numerics indicate that Reynolds’ lubrication theory for a disc is a more accurate approximation
for intermediate z,,,, values in the range 0-05 < z,,, < O-1.

@ —— T .
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Figure 6. (a) Large-z, results: (3, numerical results for « =8 with 40 elements, — -, the asymptotic predictions as given by
equation (30)
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Figure 6. (b) Small-z, , results: 3, numerical results for « =8 with 40 elements; ——, Cox’s lubrication theory as given by
equation (31)
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Figure 7. (a) Large-z, results: [], numerical results for a =4 with 40 elements; ——, asymptotic predictions as given by

equation (30)
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Figure 7. (b) Small-z,,, results: [J, numerical results for « =4 with 40 elements; , Cox’s lubrication theory as given by
equation (31)
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Figure 8. (a) Large-z, results: [, numerical results for « =2 with 40 elements; ——, asymptotic predictions as given by

equation (30)



HYDRODYNAMIC PARTICLE-WALL INTERACTION 675

L L B e i e e e I —

Q
!
X

< 10! ¢ R
R o {
i - i
- :
L a |

| a
o J

s}
10° [ i 1 | I ! Ju i 1 1 I 1 | 1 ! 1 1 1 1
0 2 4q 5 8 1.C 1.2 4 1.8 1.8 2.0
y4
lub
Figure 8. (b) Smail-z,,, results: (1, numerical results for « = 2 with 40 elements; . ——, Cox’s lubrication theory as given by

equation (31)
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(a) [T T

10!

100

Figure 9. (a) O, numerical results for the sphere case (x=1) with 40 elements; ——, theoretical predictions of Brenner as
given by equation (29); - - - - - , far-field asymptotic predictions as given by equation (30)
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Figure 10. (a) Large-z, results: [J, numerical results for a =0-5 with 40 elements; ——, asymptotic predictions as given by

equation (30)
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(b)

Figure 10. (b) Small-z,,, results: (1, numerical results for «=0-5 with 40 elements; ——, Cox’s lubrication thory as given
by equation (31)
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Figure 11. (a) Large-z, results: O, numerical results for a=0-25 with 40 elements; , asymptotic predictions as given by
equation (30)
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Figure 11. (b) Small-z,, results: [J, numerical results for « =0-25 with 40 elements; ——, Cox’s lubrication theory as given
by equation (31);- - - - - , Reynolds’ jubrication theory given by equation (33)
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Figure 12. (a) Large-z, results: [, numerical results for o =0-125 with 40 elements; ——, asymptotic predictions as given

by equation (30)
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Figure 12. (b) Small-z,,, results: O, numerical results for a=0-125 with 40 elements; ——, Cox’s lubrication theory as

given by equation (31); - - - - - , Reynolds’ lubrication theory given by equation (33)
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Figure 13. (a) Large-z, results: [J, numerical results for & =0-0625 with 40 elements; , asymptotic predictions as given
by equation (30)
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Figure 13. (b) Small-z),, results: U], numerical results for «=0-0625 with 40 elements; ——, Cox’s lubrication theory as
given by equation (31); - - - -, Reynolds’ lubrication theory as given by equation (33)
APPENDIX

The integrals C3™ and é;”’

Using standard integral tables, the integrals denoted by C»™ and C™™ can be reduced to
expressions involving the complete elliptic integrals of the first and second kind given by

" dx
K(k)=2j0 [ —KsimZx]"?’ (34
" dx
50 =2 | e 9
The final expressions for C;™ are
00 4
Cl = W K’ (36)

8
€ = €Y — 17z (K- E), 37)



686 E. P. ASCOLL D. S. DANDY AND L. G. LEAL

4
Cgo = WE’
4 1+ k2
16 ~
C%O = W [ +k2)K —2E],

32

C3* = C3' = C3° + s [(* - B)E + 8 — Sk*)K],

3kSy

)
coo 4 (2(1+k )E_K>,

= 342552 L2

cp= 2 ((1+1€2)K—k%(122+k4)E),

> T3y

16 [1+Kk?
20 __ — _
C? _——3k4y5/2( ok 2K>,

02 _ (00 __ (20
CP - CP CP >
where

K2 =1-—k2

(38)

(39)

(40)

(41)

42

(43)

44)

(45)

The corresponding expressions for é;’” are obtained from the above by replacing y with y, and k

with kg.

Small-k expansions

When k and/or kg — 0, numerical inaccuracy necessitates the use of asymptotic expansions for
the expressions C;" and C;™. These asymptotic expansions are obtained by performing a
generalized binomial expansion in k? on the integrands given in equation (25) and (26). The

results, accurate to O(k*) as k — 0, are

2n
€Y = T+ 4%,

nk?

C?I = 4)}1/2 L

2
cy = y%(l+%k2),

01 _  3nk?
3 = 4'})3/2’

c = ;’-’—(1 +3k2),

3/2

03 9rk?
ST

(46)

47)

(48)

(49)

(50)

(51
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2n
C3° = W(l +3k%), (52)
Snk?
gl = — W’ (53)
20 n 512
Cci = W(l +3k°). (54)

Again the corresponding expressions for é;"‘ are obtained from the above by replacing y with y,
and k with kg.

The singular contributions

The numerical integration breaks down as & — x since the kernel becomes unbounded in this
case. To include this integrable singular contribution it is necessary to approximate the integral
analytically. This is accomplished by Taylor series expanding the singular terms about the point
(pos 2,) In (26). The details involved in carrying out these expansions are analogous to those used
by Lee and Leal,'! the differences being only in the choice of parametrization of the surface. It is
important to-note, however, that only those terms in the kernel Q stemming from the fundamen-
tal solution (11) must be considered, since R # 0 for z > 0. Hence we consider the integral

s;+¢/2 2n f for s +e/2
L B
5;—&/2 JO r r 5;—&/2
x {ilf,C' 4+ (p* + p2) £,C3" + ppo f,{(C3° + C3%) + £or3(pC3' + p,C3°] (55)
+k[LCY+ f,r3(pC3° + p,C3Y) + 3 C3°T},

where s; is the value of the arc length parameter of the ith node, and i and k are the Cartesian base
vectors. After carrying out the expansions, the i-component of the integral is

PoZo P+ 223 2 a2 & 2 212
a; =~ 28 {fzo W +f;’o l:[pg + Z~§]1/2 - [po +Zo]1/21n 16)00 [po +Zo] /
(56)
and the k-component is

22

PoZo Z, . , € .2, s
@, >~ 2¢ {fpo [p2+ 2] +fzo[[p§+z-§]1/2 +[pf+Z°2]1/2(l—ln(16po[p§+zg]l/2)>:|},
(57)

where the subscript ‘0’ denotes evaluation at the singular point.
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